首页> 外文OA文献 >Particle Swarm Optimization for Weighted Sum Rate Maximization in MIMO Broadcast Channels
【2h】

Particle Swarm Optimization for Weighted Sum Rate Maximization in MIMO Broadcast Channels

机译:mImO中加权和率最大化的粒子群优化算法   广播频道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we investigate the downlink multiple-input-multipleoutput(MIMO) broadcast channels in which a base transceiver station (BTS) broadcastsmultiple data streams to K MIMO mobile stations (MSs) simultaneously. In orderto maximize the weighted sum-rate (WSR) of the system subject to thetransmitted power constraint, the design problem is to find the pre-codingmatrices at BTS and the decoding matrices at MSs. However, such a designproblem is typically a nonlinear and nonconvex optimization and, thus, it isquite hard to obtain the analytical solutions. To tackle with the mathematicaldifficulties, we propose an efficient stochastic optimization algorithm tooptimize the transceiver matrices. Specifically, we utilize the linear minimummean square error (MMSE) Wiener filters at MSs. Then, we introduce theconstrained particle swarm optimization (PSO) algorithm to jointly optimize theprecoding and decoding matrices. Numerical experiments are exhibited tovalidate the effectiveness of the proposed algorithm in terms of convergence,computational complexity and total WSR.
机译:在本文中,我们研究了下行链路多输入多输出(MIMO)广播信道,其中基站收发器(BTS)同时向K个MIMO移动站(MS)广播多个数据流。为了最大化受发射功率约束的系统的加权总和率(WSR),设计问题是在BTS处找到预编码矩阵,在MS处找到解码矩阵。但是,这种设计问题通常是非线性和非凸优化的,因此很难获得解析解。为了解决数学难题,我们提出了一种有效的随机优化算法来优化收发器矩阵。具体来说,我们在MS处使用线性最小均方误差(MMSE)维纳滤波器。然后,我们引入了约束粒子群优化(PSO)算法来共同优化预编码和解码矩阵。数值实验证明了该算法在收敛性,计算复杂度和总WSR方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号